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We proposed and experimentally demonstrated a simple and novel photonic spiking neuron based on a distributed
feedback (DFB) laser chip with an intracavity saturable absorber (SA). The DFB laser with an intracavity SA (DFB-
SA) contains a gain region and an SA region. The gain region is designed and fabricated by the asymmetric equiv-
alent π-phase shift based on the reconstruction-equivalent-chirp technique. Under properly injected current in the
gain region and reversely biased voltage in the SA region, periodic self-pulsation was experimentally observed due to
the Q-switching effect. The self-pulsation frequency increases with the increase of the bias current and is within the
range of several gigahertz. When the bias current is below the self-pulsation threshold, neuronlike spiking responses
appear when external optical stimulus pulses are injected. Experimental results show that the spike threshold, tem-
poral integration, and refractory period can all be observed in the fabricated DFB-SA chip. To numerically verify the
experimental findings, a time-dependent coupled-wave equation model was developed, which described the physics
processes inside the gain and SA regions. The numerical results agree well with the experimental measurements. We
further experimentally demonstrated that the weighted sum output can readily be encoded into the self-pulsation
frequency of the DFB-SA neuron. We also benchmarked the handwritten digit classification task with a simple
single-layer fully connected neural network. By using the experimentally measured dependence of the self-pulsation
frequency on the bias current in the gain region as an activation function, we can achieve a recognition accuracy of
92.2%, which bridges the gap between the continuous valued artificial neural networks and spike-based neuro-
morphic networks. To the best of our knowledge, this is the first experimental demonstration of a photonic in-
tegrated spiking neuron based on a DFB-SA, which shows great potential to realizing large-scale multiwavelength
photonic spiking neural network chips. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.485941

1. INTRODUCTION

Artificial neural networks (ANNs) show great success in per-
forming artificial intelligence tasks, such as image recognition,
object detection, and object tracking. However, running ANN
algorithms on a conventional von Neumann computer suffers
from huge power consumption and large processing latency.
The spiking neural network (SNN), which is usually regarded

as the third generation of neural network, exhibits low power
consumption and low latency when operating on neuromor-
phic hardware platforms. As a non von Neumann paradigm,
neuromorphic computing has made significant progress in re-
cent years [1–3]. Compared to the electronic counterparts, the
photonic neuromorphic computing shows obvious advantages
of high speed and energy efficiency [4–8], but it is still in its
infancy.
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Linear and nonlinear computations are the two fundamental
functions of the photonic neuromorphic computing. The
wavelength-division multiplexing architecture based on micro-
ring resonators [9,10], and the coherent architecture based on
Mach–Zehnder interferometers [11–13], are the two main-
stream approaches to implement the linear matrix-vector multi-
plication. Semiconductor lasers have become leading devices for
the photonics nonlinear neuromorphic computing as their bio-
logically plausible nonlinear neuronlike functions [14]. For in-
stance, the spiking response has been demonstrated based on
the polarization switching and injection locking effects in com-
mercially available vertical-cavity surface-emitting lasers
(VCSELs) [15–19]. In addition, the photonic SNN has been
numerically studied for pattern recognition tasks based on the
rate equation model of a VCSEL with a saturable absorber (SA)
[20–22]. The refractory period property was observed experi-
mentally in the micropillar lasers [23,24]. Photonic integrated
circuits consisting of a two-section distributed feedback (DFB)
laser and two photodetectors (PDs) were also proposed to em-
ulate the spiking response [25,26]. In that approach, both sec-
tions of the DFB regions were positively biased, and the
external optical stimulus signals were converted into the elec-
tronic signals via PDs and acted as driver currents of the
two-section DFB laser. In addition, DFB lasers have also been
demonstrated to work as graded-potential-signaling photonic
neurons [27]. In our previous works, we designed and fabri-
cated multi-longitudinal-mode photonic spiking neurons based
on Fabry–Perot lasers with SAs [28,29]. Note that, in a hard-
ware multilayer all-optical SNN, weighting devices and spiking
neurons are coupled optically. Such multi-longitudinal-mode
photonic spiking neurons can be compatible with the wide-
bandwidth weighting devices but are not suitable for the nar-
row-bandwidth weighting devices. Therefore, it is still open to
explore a novel single-longitudinal-mode photonic spiking neu-
ron that is essential for the large-scale integrated photonic SNN
with a narrow-bandwidth architecture.

In this paper, we proposed and experimentally demonstrated
a photonic integrated spiking neuron based on a DFB laser
with an intracavity SA (DFB-SA). The mechanism underlying
the self-pulsation and neuronlike spiking response is revealed,
and the operating conditions leading to the neuronlike dynam-
ics are identified experimentally. The dependence of the self-
pulsation frequency on the bias current in the gain region is
revealed. A time-dependent coupled-wave equation model
for the proposed DFB-SA is further developed. The rest of
the paper is organized as follows. Section 2 describes the fab-
rication of the DFB-SA chip and the experimental setup for
testing the photonic spiking neuron based on the DFB-SA
chip. Section 3 presents the experimental results of the self-
pulsation and neuronlike spiking response. The dependence
of the self-pulsation frequency is revealed. The excitable spiking
threshold, temporal integration, and refractory period results
are all presented. The theoretical model and numerical results
are presented in Sections 4 and 5. The rate encoding based on
the controllable self-pulsation frequency has been applied suc-
cessfully for an image recognition task of the handwritten digit
dataset. By exploiting the ANN-to-SNN conversion, we
achieved a testing accuracy of 92.2% with a single-layer fully

connected network. Finally, the overall conclusion is summa-
rized in Section 6.

2. DEVICE FABRICATION AND EXPERIMENTAL
SETUP

As presented in Fig. 1(a), the epitaxial wafer structure consists
of an n-InP substrate, a buffer layer, two separate confinement
heterostructure layers, strained multiple quantum wells with
compressive strain quantum wells, tensile strain quantum bar-
riers, an InGaAsP grating layer, and a p-InP cladding layer. The
grating is designed with a sampled grating. We shift the half
period of the sampling structure in the middle of the DFB laser.
This sampled grating structure can equivalently introduce a
π-phase shift (π-EPS) as shown in Fig. 1(b) [30]. Here, the
π-EPS is realized by the reconstruction-equivalent-chirp (REC)
technique. Compared to the conventional electron-beam
lithography, the REC technique offers obvious advantages of
low cost and precise wavelength control [31]. Anti-reflection
(AR) and high-reflection (HR) coatings are applied to the two
laser facets to improve the light emission power. Here, the SA
region is designed near the HR side for an intracavity configu-
ration as shown in Fig. 1(c), which is the micrograph picture of
the fabricated DFB-SA chip. Then, the chip was further but-
terfly packaged without an isolator and was then tested for
emulating a photonic spiking neuron.

The experimental setup for testing the DFB-SA is shown in
Fig. 2(a). A tunable laser generates a CW optical carrier. The
CW light was injected into an intensity modulator, and an ar-
bitrary wave generator (AWG, Tektronix AWG70001A) pro-
duced the defined external electronic stimulus. Two
polarization controllers were employed before and after the in-
tensity modulator to match the polarization state. Then, the
modulated optical signal was injected into the DFB-SAwithout
an isolator through a three-port optical circulator. The optical
spectrum was measured by an optical spectrum analyzer
(Advantest Q8384). Two PDs were employed to realize the
optical–electronic conversion, and a real-time oscilloscope
(OSC, Keysight DSOV334A, DSOZ592A) was utilized to
measure the time series. The gain region of the DFB-SA is
driven by a current source, and the SA region is reversely driven
by a voltage source. The bias current in the gain region is de-
noted as the gain current IG , and the reversely biased voltage in
the SA region is denoted as V SA.

The measured power-current curves for two representative
cases of reversely biased voltages are depicted in Fig. 2(b). The

Fig. 1. (a) Epitaxial wafer structure of the DFB-SA, (b) schematic of
the fabricated DFB-SA chip, and (c) sample of the fabricated DFB-SA
chip.
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threshold current of the DFB-SA is about IG � 86 mA for
V SA � 0 V and is IG � 88 mA for V SA � −0.4 V. It is shown
that, when a reversely biased voltage is applied, the threshold
moves to a larger injection current, and the output power is
decreased to some extent due to the absorption effect of the SA
region. The optical spectrum of a free-running DFB-SA for
V SA � 0 V and IG � 99 mA under the CW state is presented
in Fig. 2(c). It can be seen that the peak wavelength is about
1548.66 nm. In addition, we can find that the optical spectrum
for the case of V SA � −0.4 V and IG � 120 mA under
self-pulsation is slightly broadened compared to the case
of V SA � 0 V.

3. EXPERIMENTAL RESULTS

To begin with, we explore the self-pulsation behavior of the
fabricated DFB-SA. Periodic excitable spike outputs can be ob-
served when the bias current varies. Some representative peri-
odic spike sequences are shown in Fig. 3. By fixing the reverse
voltage of the SA as V SA � −0.4 V, we consider three cases of
gain currents. The temporal output and the corresponding
power spectra are displayed. It can be seen that for
IG � 115 mA, the self-pulsation frequency is 0.703 GHz.
For IG � 120 mA and IG � 130 mA, the frequencies are
0.938 GHz and 1.133 GHz, respectively. In addition, the pulse
amplitude is also increased for a relatively large gain current.

To further reveal the self-pulsation condition, the spike fre-
quency as a function of the gain current for different cases of
V SA is presented in Fig. 4. The laser thresholds are around
90 mA and 94 mA for the cases of V SA � −0.8 V and
V SA � −1.4 V. When the gain current is biased above the laser

threshold, the CW state is observed first, and then the self-
pulsation state can be observed. We can find that, the range of
the gain current that leads to the self-pulsation outputs is dis-
tinct for different cases of V SA. When V SA � −0.4 V, for the
gain current ranging from 115 to 132 mA, the self-pulsation
output can be achieved, and the frequency is varied from
0.703 GHz to 1.25 GHz. For V SA � −0.8 V, the range of gain
current leading to the self-pulsation output is from 123 mA
to 152 mA, and the frequency is varied from 0.879 GHz to
1.78 GHz. For V SA � −1.4 V, in the range of the gain cur-
rent from 141 mA to 174 mA, the DFB-SA operates in a peri-
odic self-pulsation regime, and the frequency increases from
1.33 GHz to 2.25 GHz. Note, this self-pulsation property em-
ulates the rate encoding of a biological neuron, and the spike
frequency is much higher than the biological counterpart.

Next, we experimentally demonstrated the nonlinear neu-
ronlike response of the DFB-SA. Here, the SA region is fixed
at V SA � −0.4 V, and the gain current is biased below the self-
pulsation threshold. The excitability threshold property is pre-
sented in Fig. 5. As can be seen in Figs. 5(a) and 5(b) for five
input stimulus pulses with different intensities, four spikes are

Fig. 2. (a) Experimental setup for a photonic spiking neuron based
on the DFB-SA; (b) PI curves of the DFB-SA for V SA � 0 V and
V SA � −0.4V; (c) optical spectra of the free-running DFB-SA for
V SA � 0 V, IG � 99 mA and V SA � −0.4 V, IG � 120 mA.

Fig. 3. (a1)–(a3) Time series of period spike outputs; (b1)–(b3) the
corresponding power spectra of the DFB-SA for different gain
currents with V SA � −0.4 V, IG � 115 mA, IG � 120 mA, and
IG � 130 mA.

Fig. 4. Spike frequency as a function of the gain current for different
cases of V SA.
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generated with almost the same intensity. The inset in Fig. 5(b)
denotes the enlargement of a single spike. We can see that the
full width at half maximum of the single spike is around 120 ps.
The experimental color-coded temporal map plotting the
superimposed time series of the responses corresponding to
100 consecutive arriving stimuli events is presented in Fig. 5(c).
We can see that four distinguishable spikes can be observed in
the two-dimensional map, indicating that the excitable behav-
ior is reproducible in the experiment.

In the following, we explore the temporal integration behav-
ior of the fabricated DFB-SA. We designed several pulse pairs
with different inter-spike-intervals (ISIs) as the external stimu-
lus. The temporal time series of the stimulus and response are
presented in Fig. 6. Here, the first single weak pulse and the last
single strong pulse are designed as reference pulses. We con-
sider that the single weak pulse is below the excitable threshold,
whereas, the single strong pulse exceeds the excitable threshold.
It can be seen that, the single weak stimulus pulse cannot

trigger a spike response, whereas, the last strong pulse can pro-
duce a spike response. In addition, when the ISI is not greater
than 0.66 ns, four spikes are generated for the first four closely
spaced pulse pairs with relatively small ISIs. For the last three
pulse pairs with large ISIs, the two stimulus pulses cannot tem-
porally integrated and cannot exceed the excitable threshold.
Thus, the DFB-SA emulates the leaky integrate-and-fire (LIF)
neuron [32].

To emulate the refractory property, we also designed several
pulse pairs as the external stimuli. Here, we also introduce a
single pulse as the reference pulse. The stimulus signal is pre-
sented in Fig. 7(a). The stimuli intensity is chosen to ensure
that the first single pulse can trigger a spike response. As pre-
sented in Figs. 7(b)–7(f ), different gain currents lead to differ-
ent refractory periods. In Fig. 7(b), for IG � 98.7 mA, only
the single spike is produced for each pulse pair. For IG �
104.4 mA, two spikes can be generated for the last pulse pair
with ISI of 1.24 ns. With the increase of the gain current, two
spikes can be generated for a greater number of pulse pairs.
Namely, the refractory period is decreased with the increase
of the gain current. In the experiment, we find that the bias
current of the gain region, the reverse voltage of the SA region,
as well as the injection optical power can all affect the refractory
period, which is associated with the carrier recovery process
[28]. In practice, the spiking processing speed is limited by
the refractory period.

In our experiments, the fabricated DFB-SA chip can emu-
late the rate encoding mechanism and can also emulate the neu-
ronlike response of an LIF neuron. Thus, the DFB-SA chip can
be used as a fundamental building block of photonic SNN.

Fig. 5. Excitability threshold property of DFB-SA subject to exter-
nal perturbations. (a) The external stimulus; (b) the response output,
the inset represents the enlargement of a single spike; (c) temporal
maps plotting the response of the DFB-SA neuron to the arrival of
100 consecutive external stimuli with V SA � −0.4 V and
IG � 99.2 mA. The wavelength of the injected laser is 1548.61 nm.

Fig. 6. Temporal integration behavior of the DFB-SA spiking neu-
ron: (a) the external stimulus with pulse pairs having different ISIs;
(b) the response with V SA � −0.4 V and IG � 94 mA. The ISI for
seven pulse pairs is, respectively, 0.40 ns, 0.48 ns, 0.64 ns, 0.66 ns,
0.80 ns, 0.86 ns, and 1.0 ns.

Fig. 7. Refractory period behavior of the DFB-SA spiking neuron:
(a) external stimulus with pulse pairs having different interspike inter-
val; (b)–(f ) the response under different conditions of the gain current.
The gain current is, respectively, (b) 98.7 mA, (c) 104.4 mA,
(d) 105.1 mA, (e) 111.0 mA, and (f ) 112.1 mA. The ISI for seven
pulse pairs is, respectively, 0.48 ns, 0.58 ns, 0.72 ns, 0.88 ns,
1.0 ns, 1.16 ns, and 1.24 ns.
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4. THEORETICAL MODEL

In a DFB laser, due to the distributed feedback provided by the
Bragg grating, the carrier density and optical field are nonuni-
form along the laser cavity. Here, we adopt the well-known
time-dependent coupled-wave equations to verify the experi-
mental findings. We modify the model to introduce the gain
region, SA region, as well as the external optical injection term.
A schematic of the DFB-SA subject to external optical injection
is presented in Fig. 8.

The rate equations for the carrier density in the gain region
N 1�z, t� and SA region N 2�z, t�, and the coupled-mode equa-
tions for the slowly varying envelopes of the forward traveling
wave F �z, t� and backward traveling wave R�z, t� can be ex-
pressed as follows [33–35]:

1

vg

∂F �z, t�
∂t

� ∂F �z, t�
∂z

�
�
Γg1,2�z, t� − αs

2
− iδ�z, t�

�
F �z, t� − iκR�z, t� � sF , (1)

1

vg

∂R�z, t�
∂t

−
∂R�z, t�

∂z

�
�
Γg1,2�z, t� − αs

2
− iδ�z, t�

�
R�z, t� − iκF �z, t� � sR , (2)

∂
∂t
N 1�z, t� �

IG
eV

− AN 1�z, t� − BN 1�z, t�2

− CN 1�z, t�3 − g1�z, t�vgS�z, t�, (3)

∂
∂t
N 2�z, t� �

I SA
eV

− AN 2�z, t� � g2�z, t�vgS�z, t�, (4)

where κ represents grating coupling coefficient, vg is group
velocity, Γ denotes the optical confinement factor, sF and sR
denote the spontaneous emission noises, and IG and I SA re-
present the bias current of gain and SA region, respectively.
Note, for the SA region, the grating coupling term and sponta-
neous emission noises terms should be removed in Eqs. (1)
and (2). V represents the active region volume of the gain and
SA regions, respectively. e is electron charge. g1�z, t� is the
material gain of the gain region, and g2�z, t� represents the
material absorption coefficient of the SA region.

Specifically, in Eq. (4), the first term on the right-hand side
represents the effect of reverse voltage of the SA region. Note
that, there is no direct and simple method to introduce the
reverse voltage in the rate equation. Thus, we introduce a re-
verse bias current I SA to be equivalent to the effect of reverse
voltage for simplicity. The second term denotes the depletion of

carrier due to the carrier lifetime, and the third term accounts
for the increase in carrier due to the absorption.

Here, g1�z, t� can be expressed as

g1�z, t� �
gN ln�N 1�z, t�∕NT �

1� εS�z, t� : (5)

The material absorption coefficient of the SA region g2�z, t�
can be phenomenologically introduced as

g2�z, t� � α0 − B0�N 2�z, t� − N 0�, (6)

where α0 � 1.5 × 106 m−1, B0 � 9 × 10−18 m2, and N 0 �
0.75 × 1024 m−3.

The variables δ�z, t� and S�z, t� denote the detuning factor
and photon density, which are given, respectively, by [33,34]

δ�z, t� � 2π

λ0
neff �z, t� −

π

Λ
, (7)

S�z, t� � ΓneffL
ffiffiffiffiffiffiffiffiffiffiffi
ε0∕μ0

p
2vgV hν

�jF�z, t�j2 � jR�z, t�j2�, (8)

where λ0 is the reference wavelength, and Λ is the grating
period. λB � 2neffΛ is the Bragg wavelength. The parameters
gN , NT , and ε represent the differential gain, transparency car-
rier density, and gain suppression coefficient, respectively. L de-
notes laser cavity length. h is the Planck constant.

The effective refractive index neff �z, t� is given by

neff �z, t� � neff 0 − Γαmg�z, t�
λ0
4π

: (9)

The noise terms are assumed to be a Gaussian distributed
random process that satisfies

hjs̃�z, t�jjs̃�z, t�ji � 2

ffiffiffiffiffi
μ0
ε0

r
γΓnspg�z, t�hν

neff �z, t�
δ�z − z 0�δ�t − t 0�:

(10)

The boundary conditions including the facet reflections and
the external injection can be expressed as [36]

F �0, t� � rARR�0, t� � tARE inj�t�e−i�ωinj−ω0�t , (11)

R�L, t� � rHRF �L, t�, (12)

where rAR and tAR denote the reflection coefficient and trans-
mission coefficient of the AR facet. rHR represents the reflec-
tion coefficient of the HR facet. E inj�t� denotes the external
optical stimulus signal. ωinj and ω0 represent the angular fre-
quency of the injected field and the DFB-SA, respectively.

The basic parameters are given in Table 1. With these
parameters, we numerically solve the time-domain traveling
wave model with the split-step finite difference method. The
whole laser cavity is split to several tens of subsections with
a length of Δz � vgΔt, where Δt denotes the time step.

5. NUMERICAL RESULTS

Based on the time-dependent coupled-wave model, we further
numerically verified the experimental findings. Here, we con-
sider I SA � 0 mA. As shown in Fig. 9 with the increase of the
gain current, the self-pulsation frequency is increased.

Fig. 8. Schematic of the DFB-SA subject to external optical
injection.
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Then, we consider the neuronlike response of the DFB-SA
subject to optical pulse injection. As displayed in Fig. 10, the
absolute refractory period, relative refractory period, temporal
integration, and spike threshold properties can all be observed
numerically. These numerical results agree well with the exper-
imental findings. Note, due to the complicated parameters of
the DFB-SA, such as the grating coupling coefficient, internal
loss, and the HR facet random phase, the bias currents
in the simulation are a little different from the experiments,
but the simulated self-pulsation and neuronlike response can
reveal the dynamics process of a DFB-SA. Thus, this time-
dependent coupled-wave model provides valuable guidelines
for the design and optimization of the DFB-SA chip, which

is helpful for the hardware-algorithm codesign for photonic
SNNs.

At last, we adopt the experimentally measured dependence
of the spike frequency on the gain current as the spiking
activation function. For the Modified National Institute of
Standards and Technology (MNIST) handwritten digit classi-
fication task [37], the input image of a handwritten digit is
28 × 28 pixels. A simple single-layer fully connected neural net-
work is considered. The input layer contains 784 neurons, and
the output layer contains 10 neurons as presented in Fig. 11(a).

Table 1. Basic Parameters Used in This Paper [33,34]

Symbol Description Value

κ Grating coupling coefficient 1000 m−1

Λ Grating period 242.0589 nm
λB Bragg wavelength 1550 nm
L Length of the laser cavity 1500 μm
LG Length of the gain section 1480 μm
LSA Length of the SA section 20 μm
w Width of the waveguide 2 μm
d Thickness of the active layer 60 nm
λ0 Reference wavelength 1550 nm
A Linear recombination coefficient 1 × 108 s−1

B Bimolecular recombination coefficient 1 × 10−16 m3∕s
C Auger recombination coefficient 3.5 × 10−41 m3∕s
αs Internal loss 5000 m−1

neff 0 Effective refractive index 3.2
ng Group refractive index 3.6
NT Transparent carrier density 1.5 × 1024 m−3

αm Linewidth enhancement factor 1
Γ Confinement factor 0.08
gN Differential gain 1.5 × 105 m−1

ε Gain suppression coefficient 6 × 10−23 m3

γ Spontaneous emission coefficient 5 × 10−5

Fig. 9. Numerical results of time series (left column) and power
spectra (right column) of the self-pulsation output of the DFB-SA.
(a) IG � 45 mA, (b) IG � 48 mA, and (c) IG � 51 mA and
I SA � 0 mA.

Fig. 10. Numerical results of the neuronlike response: (a) represents
the stimuli; (b) represents the response with IG � 41.7 mA and
I SA � 0 mA.

Fig. 11. (a) The schematic of an ANN-to-SNN conversion using
the photonics spiking neuron based on DFB-SA. (b) The activation
function; the solid line is the curve of the measured data, and the
dashed line is the corresponding polynomial fitting of the optical ac-
tivation function. (c) The training and test accuracy for the MNIST
dataset and (d) the confusion matrix of the inference task.
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In ANN training, the fitted curve of the dependence of the
spike frequency on the gain current as shown in Fig. 11(b)
is used as the activation function. The ANN is trained with
the backpropagation method. Note, we only consider the
non-negative weight in training, which can also be regarded
as nonlinear activation before summation [38]. The inference
process is accomplished with the ANN-to-SNN conversion
[39]. The output class is encoded into the self-pulsation fre-
quency. Similar to the output decision of ANN, the output
neuron with the highest frequency is considered as the output
class. The training accuracy and the testing accuracy are pre-
sented in Fig. 11(c). The confusion matrix is presented in
Fig. 11(d). Numbers on the diagonal line represent the recog-
nition accuracy. The accuracy reaches 92.2%, which bridges
the gap between the continuous-valued ANN and spike-based
neuromorphic network. Note, if hidden layers or convolution
layers are introduced, the accuracy can be further increased.

6. CONCLUSIONS

We proposed and experimentally demonstrated the rate encod-
ing mechanism as well as the neuronlike spiking response in a
fabricated DFB-SA chip. The experimental results showed that
the self-pulsation frequency is increased with the increase of the
bias current in the gain region. In addition, the neuronlike non-
linear computation including the excitable spiking threshold,
temporal integration, and refractory period were successfully
observed in the experiment. We also verified the experimental
findings with the time-dependent coupled-wave model. We
further applied the experimentally measured dependence of
the spike frequency on the gain current as the optical spiking
activation function, and realized the pattern classification task.
By adopting the ANN-to-SNN conversion, we achieved the
test accuracy of 92.2% with the single-layer fully connected
network. Note that, the DFB-SA can be designed with a multi-
channel and can be integrated with other photonic devices [30],
which paved the way for realizing large-scale photonic spiking
neural chips. As a future attempt, it was also interesting to de-
sign this DFB-SA chip on silicon [40] to be better compatible
with the silicon photonics synaptic network, thus, realizing full-
function photonic spiking neuron network chip.
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